Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ningfeng Zhao and David M.

 Eichhorn*Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA

Correspondence e-mail:
david.eichhorn@wichita.edu

Key indicators

Single-crystal X-ray study

$T=150 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.067$
$w R$ factor $=0.211$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dichlorobis(3,5-dimethylpyrazole)copper(II)

The title compound, $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, has been synthesized as part of a project aimed at the synthesis and characterization of scorpionate ligands with cyano substituents. The structure shows the Cu ion coordinated by two 3,5 -dimethylpyrazole ligands and two chloride ligands in a tetrahedral coordination geometry.

Comment

We are studying the synthesis of polypyrazolylborate compounds with cyano substituents on the pyrazole rings. The title compound, (I), was isolated as a by-product from the synthesis of metal compounds of 4-cyano-3,5-dimethylpyrazole to be used for studying magnetic interactions involving the cyanopyrazole moiety.

(I)

There have been a few crystal structures reported to date for four-coordinate Cu complexes containing two coordinated pyrazoles and two coordinated halides, viz. dichlorobis(1-phenyl-3,5-dimethylpyrazole)copper(II) (Francisco et al., 1980; Costa-Filho et al., 1999), dibromobis(3,5-diphenylpyrazole)copper(II) (Murray et al., 1988), dibromobis(1-phenyl-3,5-dimethylpyrazole)copper(II) (Costa-Filho et al., 1999), trans-dibromobis(5- t-butylpyrazole)copper(II) (Liu et

A view of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Received 4 January 2005 Accepted 29 March 2005 Online 9 April 2005
al., 2001), bis(3-amino-4-acetyl-5-methylpyrazole)dichloro copper(II) (Hergold-Brundic et al., 1991) and trans-bis(4bromopyrazole)dichlorocopper(II) (Valle et al., 1995). The bond lengths in the title compound are comparable with those in these structures, which show $\mathrm{Cu}-\mathrm{N}$ bond lengths ranging from 1.94 to $2.02 \AA$ and $\mathrm{Cu}-\mathrm{Cl}$ bond lengths ranging from 2.23 to $2.34 \AA$.

Experimental

The title compound was isolated from a reaction to synthesize a copper complex of 4-cyano-3,5-dimethylpyrazole. Anhydrous CuCl_{2} and 4-cyano-3,5-dimethylpyrazole were combined in THF in a 1:2 molar ratio. The isolated crystals represent a decomposition product of the ligand. Crystals were grown by slow evaporation of a dichloromethane solution.

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=326.71$
Monoclinic, $C 2 / c$
$a=15.023$ (6) A
$b=8.270$ (7) \AA
$c=24.038$ (7) \AA
$\beta=96.03$ (3) ${ }^{\circ}$
$V=2970(3) \AA^{3}$
$Z=8$

Data collection

Enraf-Nonius CAD-4

 diffractometerNon-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.449, T_{\text {max }}=0.696$
2697 measured reflections
2607 independent reflections
1907 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.211$
$S=1.07$
2607 reflections
158 parameters
H -atom parameters constrained
$D_{x}=1.461 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=10-12^{\circ}$
$\mu=1.82 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, blue
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

$$
R_{\mathrm{int}}=0.076
$$

$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 17$
$k=0 \rightarrow 9$
$l=-28 \rightarrow 28$
3 standard reflections frequency: 60 min intensity decay: -2%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1478 P)^{2}\right. \\
& +1.1566 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.93 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\min }=-1.14 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{N} 1$	$2.007(5)$	$\mathrm{Cu}-\mathrm{Cl} 2$	$2.2340(18)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.010(5)$	$\mathrm{Cu}-\mathrm{Cl} 1$	$2.2404(18)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	$105.5(2)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 1$	$101.26(14)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 2$	$115.49(15)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{Cl} 1$	$115.39(15)$
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{Cl} 2$	$101.20(15)$	$\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{Cl} 1$	$117.95(8)$

H atoms were positioned geometrically and refined as riding on the atoms to which they are attached, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, N)$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl atoms. The deepest hole is located $1.01 \AA$ from the Cu atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Costa-Filho, A. J., Munte, C. E., Barberato, C., Castellano, E. E., Mattioli, M. P. D., Calvo, R. \& Nascimento, O. R. (1999). Inorg. Chem. 38, 4413-4421.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Francisco, R. H. P., Lechat, J. R., Massabni, A. C., Melios, C. B. \& Molina, M. (1980). J. Coord. Chem. 10, 149-153.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hergold-Brundic, A., Kaitner, B., Kamenar, B., Leovac, V. M., Iveges, E. Z. \& Juranic, N. (1991). Inorg. Chim. Acta, 188, 151-158.
Liu, X., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2001). Acta Cryst. C57, 1253-1255.
Murray, J. J., Raptis, R. G. \& Fackler, J. P. Jr (1988). Inorg. Chem. 27, 26-33.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.
Valle, G., Ettorre, R. \& Peruzzo, V. (1995). Acta Cryst. C51, 1293-1295.

